Monthly Archives: October 2020

Autoencoders in Keras and Deep Learning

We all are well aware of the Supervised Machine Learning algorithms where ML algorithm tries to understand the relationship between input features and labels from the training data and is expected to automatically generate a similar kind of relationship between test data features and set of possible output labels. Although we solve lots of problems with supervised learning… Read More »

Sentiment Classification with Deep Learning: RNN, LSTM, and CNN

Sentiment classification is a common task in Natural Language Processing(NLP). There are various ways to do sentiment classification in Machine Learning (ML). In this article, we talk about how to perform sentiment classification with Deep Learning (Artificial Neural Networks). In my previous two articles, We have already talked about how to perform sentiment analysis using different traditional machine… Read More »

Sentiment Analysis with Python: TFIDF features

In my previous article on ‘Sentiment Analysis with Python: Bag of Words‘, We compared the results of three traditional machine learning sentiment classification algorithms using bag-of-words features(from scratch). This is my second article on sentiment analysis in continuation of that and this time we are going to experiment with TFIDF features for the task of Sentiment Analysis on… Read More »

Sentiment Analysis with Python: Bag of Words

Sentiment Analysis Overview Sentiment Analysis(also known as opinion mining or emotion AI) is a common task in NLP (Natural Language Processing). It involves identifying or quantifying sentiments of a given sentence, paragraph, or document that is filled with textual data. Sentiment Analysis techniques are widely applied to customer feedback data (ie., reviews, survey responses, social media posts). Sentiment Analysis has proved… Read More »

Optimizers explained for training Neural Networks

Overview Training a Deep Learning model (or any machine learning model in fact) is all about bringing the model predictions (model output) close to the real output(Ground truth) for a given set of input-output pairs. Once the model’s results are close to the real results our job is done. To understand how close model predictions are with respect… Read More »